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Judging data nonoverlap between phases is a popular tech-
nique with single-case researchers for its simplicity and 
close integration with the visual analysis of data graphs 
(Parsonson & Baer, 1978). Nonoverlap has been used for 
decades, and for more than 20 years, percent of nonoverlap-
ping data (PND; Scruggs, Mastropieri, & Casto, 1987) 
served as a handy numeric summary of nonoverlap. A form 
of data nonoverlap was first used even earlier, when Owen 
White and Norris Haring (1980) introduced Phase B data 
overlap from an extended phase “celeration” or “split mid-
dle” line. The extended celeration line (ECL) for measuring 
growth in 6-cycle logarithmic graph paper was a key tool in 
precision teaching, as developed by Ogden Lindsley and his 
students, initially at Universities of Kansas and Washington 
(Calkin, 2005; Lindsley, 1991; White, 1974, 1986).

Data nonoverlap has increased legitimacy within the 
broader research community as it has become recognized 
that a complete test of nonoverlap (weighing all data points 
equally) has much in common with respected nonparamet-
ric “dominance statistics,” Kendall’s Tau, Mann–Whitney 
U test, Sommer’s d, and area under the curve (AUC; Acion, 
Peterson, Temple, & Arndt, 2006; Cliff, 1993; Delaney & 
Vargha, 2002; Grissom & Kim, 2005). With minor calcula-
tions, output from these dominance statistics can be con-
verted to PND (Huberty & Lowman, 2000). Thus, complete 
nonoverlap is now acknowledged to be a robust, distribu-
tion-free technique with good statistical power (D’Agostino, 

Campbell, & Greenhouse, 2006). There are currently more 
than nine nonoverlap techniques from which to choose (for 
comparisons, see Parker, Vannest, & Davis, 2011).

Although nonoverlap is easily accessible and practitio-
ner friendly, its major shortcoming is the inability to con-
sider baseline trend. Visual analysts warn that positive 
baseline trend weakens the inference that change was due to 
the treatment, which is termed conclusion validity (Kane, 
2001; Kazdin, 2003; Orme, 1991). Positive baseline trend 
raises a competing hypothesis that progress could be due in 
part to preexisting improvement momentum. Because base-
line trend is a serious challenge to conclusion validity, sev-
eral parametric statistical methods have been designed to 
control for it: Crosbie’s ITSACORR model (Crosbie, 1993, 
1995); Last Treatment Day prediction technique of White, 
Rusch, Kazdin, and Hartmann (1989); mean-shift and 
mean-plus-trend family of models (Center, Skiba, & Casey, 
1985–1986); and mean-shift and mean-plus-trend models 
(Allison & Gorman, 1993; Faith, Allison, & Gorman,1996).

With one notable exception, nonoverlap techniques 
have not attempted to control trend. The exception is ECL 
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Abstract

Nonoverlap is widely used as a statistical summary of data; however, these analyses rarely correct unwanted positive baseline 
trend. This article presents and validates the graph rotation for overlap and trend (GROT) technique, a hand calculation 
method for controlling positive baseline trend within an analysis of data nonoverlap. GROT is validated for controlling positive 
baseline trend and validated socially by visual analysis agreement. The flexibility and generality of GROT is demonstrated by 
using it with two alternative slope calculations: White and Haring’s bi-split and Tukey’s tri-split. In addition, GROT is presented 
as a technique that can be adapted for any non-overlap effect size method; examples here include the original percent of 
nonoverlapping data and newer nonoverlap of all pairs. examples here include the original percent of nonoverlapping data 
and newer nonoverlap of all pairs. Caution is urged to control baseline trend only when it is pronounced and reliable. GROT 
moves the field forward as a robust technique suitable for both visual and statistical analysis.
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introduced by White and Haring (1980). This pencil-and-
ruler technique has proved itself useful since its inception 
nearly 40 years ago. ECL begins with hand-fitting a bi-
split median line (Koenig, 1972) to Phase A data, and then 
extending it through Phase B. The nonoverlap calculation 
is the percentage of Phase B data points above that 
extended line, compared with an expected 50%. There are 
three limitations for ECL. First is the low statistical power 
provided by its binomial test. Second, the ECL is histori-
cally tied to Koenig’s bi-split median trend line, which is 
presently superseded by the Tukey tri-split line (Tukey, 
1977). ECL is not inherently restricted to using the bi-split 
line, though, and could adapt to other trend lines (though 
apparently adaptations have never been published). Third, 
ECL may not be viewed as a true nonoverlap method, as it 
does not directly contrast Phases A and B data points, but 
rather Phase B data points overlapping an extended Phase 
A trend line.

Despite those limitations, the ECL method of merging 
data nonoverlap and trend has not been equaled in nearly 
four decades. In fact, the recently published as percentage 
of data exceeding a median trend (PEM-T; Wolery, Busick, 
Reichow, & Barton, 2010) appears identical to ECL. Ma’s 
percent of data exceeding the median (PEM; Ma, 2006) 
appears a simpler version of ECL for baseline data that have 
no trend (Parker & Hagan-Burke, 2007). However, ECL 
remains superior to PEM by offering a viable (albeit low 
power) analysis summary.

The field of single-case research (SCR) nonoverlap 
methods presently has nine contenders. They have been 
compared in detail elsewhere (Parker et al., 2011), so here a 
brief overview will suffice. The nine are as follows: (a) 
ECL (White & Haring, 1980), (b) PND (Scruggs et al., 
1987), (c) PEM (Ma, 2006), (d) percent of all nonoverlap-
ping data (PAND; Parker, Hagan-Burke, & Vannest, 2007), 
(e) Pearson’s phi (ϕ; Parker et al., 2007), (f) improvement 
rate difference (IRD; Parker, Vannest, & Brown, 2009), (g) 
nonoverlap of all pairs (NAP; Parker & Vannest, 2009), (h) 
Kendall’s Tau for nonoverlap between groups (TAU

novlap
; 

Parker, Vannest, Davis, & Sauber, 2011), and (i) Combined 
Mann–Whitney U test nonoverlap with Tau baseline trend 
control (Tau-U; Parker, Vannest, et al., 2011). This list does 
not include percentage reduction data (PRD; O’Brien & 
Repp, 1990), which is a parametric and mean-based method, 
rather than nonoverlap. It also does not include the percent-
age of zero data (PZD; Scotti, Evans, Meyer, & Walker, 
1991), which is applicable to only some clients and goals. 
The limitation of failing to consider Phase A trend applies 
to all but two of the nine listed, exceptions being the vener-
able ECL and the new Tau-U. The limitation of offering no 
p values applies only to PND. The weakness of very low 
statistical power (especially undesirable with small sam-
ples) applies to ECL, PND (for which statistical power is 
unknown), and PEM. The other six nonoverlap techniques 

represent improvement due to greater power, less likeli-
hood of chance-level results, and better precision for data-
based decisions (Parker et al., 2011).

The present article introduces a new visual-graphic 
method with the same aims as ECL, with some distinct 
advantages over its predecessor. The new method, graph 
rotation for overlap and trend (GROT), allows users to con-
trol positive baseline trend and calculate a nonoverlap-
based effect size on the adjusted data set. GROT is a flexible 
technique that can be applied using any trend line slope esti-
mate or nonoverlap effect size. Unlike ECL, GROT is a true 
nonoverlap technique, with more direct interpretability. 
GROT yields a “PND” summary score, more meaningful 
than ECL’s interpretation as the “ratio of data points around 
an extended baseline.” GROT’s second advantage as a true 
nonoverlap method is that it offers considerably more sta-
tistical power than ECL. ECL relies on the low power bino-
mial test or median-based “Sign Test” for proportion of data 
split by the extended median-based trend line. In contrast, 
the flexibility available in GROT allows users to apply 
effect size metrics with higher statistical power. For exam-
ple, NAP or any other “dominance” nonoverlap test pos-
sesses 91% to 94% of the power of a regression test as 
measured by the “Pitman Efficiency” rating (Hollander & 
Wolfe, 1999). Pitman Efficiency index for the Sign Test 
used in the ECL method is closer to 60%, depending on 
sample size and distribution shape (Hodges & Lehmann, 
1956). The third of GROT’s advantages is its broad applica-
bility with any trend and with any nonoverlap index. Thus, 
it can be adapted to user preferences, and be used with new 
or future trend estimates and nonoverlap indices as they are 
developed. Despite the differences between ECL and 
GROT, they have much in common. Both are graph based, 
relying on visual analysis and pencil-and-ruler operations 
on paper. Both are “distribution free” and robust to outliers. 
Both can be applied to ordinal as well as interval-level 
scales, and to data which fail to meet parametric distribu-
tion assumptions (Wilcox, 2010). Therefore, GROT pro-
vides three improvements as answers to limitations of ECL, 
while retaining the strengths which have promoted its 
longevity.

GROT is first demonstrated here on two data sets, with 
results technically validated by the well-reputed regression 
method by Allison and colleagues (Allison & Gorman, 
1993; Faith et al., 1996). Next, GROT graphs are subjected 
to visual judgments to answer two questions. First, “Will 
results produced from GROT agree with visual judgment of 
expert but blind raters?” and second, “Will effects be 
reduced (between Phases A and B) due to baseline trend 
control?”

In brief, the GROT procedure is as follows to provide the 
reader a general idea of the steps. More detailed procedures 
appear following this brief explanation and these details 
correspond to some of the options for this flexible method, 
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including two trend calculation options and two nonoverlap 
options.

First, a trend line is fit to Phase A (any calculation may 
be used as demonstrated later). Second, it is “dropped 
down” to the X- and Y-axis intersect (keeping parallel with 
the original line), and also extended through the end point 
of Phase B. Third, the graph paper is rotated so that new 
dropped trend line becomes parallel with a new horizontal 
base of the graph. In addition, the line between the two 
phases (intervention onset line) is redrawn so that it is verti-
cal and now perpendicular to the new horizontal axis. 
Finally, one can compare Phases A and B data visually and/
or statistically. We later present two statistical methods as 
illustrations and visual judgments as validation. The physi-
cally rotated graph has the effect of statistically controlling 
for Phase A trend. The effect is identical to using semipar-
tial correlation to statistically control for baseline trend, as 
in the well-reputed technique by Allison, Faith, and col-
leagues (Allison & Gorman, 1993) without the calculation.

Two Trend Line Slopes
Because GROT is a general method which works with 
any trend line slope estimate, this article demonstrates 
two rank-order slopes: the bi-split or “quarter intersect” 
slope (Koenig, 1972; White, 1974) and Tukey’s tri-split 
median-based slope (Tukey, 1977). Other options for 
trend calculation include the Theil–Sen or “Kendall’s 
slope” (Sen, 1968; Theil, 1950) and the linear regression 
slope. We do not provide examples for these but they also 
work with GROT.

Koenig bi-split, median-based slope. The most popular hand-
fit trend line in special education was first introduced to 
educators by Koenig (1972), modified by White (1974), 
and popularized by White and Haring (1980) and by Kaz-
din (1982). Koenig’s bi-split “quarter intersect” method 
was first widely used in schools within the precision teach-
ing (Pennypacker, Koenig, & Lindsley, 1972). The slope 
was calculated on a “celeration line” plotted on a “standard 
celeration chart” (6-cycle logarithmic ruled graph paper) 
and is distinguished from performance rate (Calkin, 2005). 
Readers may be interested to note that this bi-split method 
of calculating celeration or slope was known even earlier 
outside of education, where it was called the “Brown–
Mood slope,” as it was popularized by Brown and Mood 
(1951) from an even earlier publication by Wald (1940).

The quarter intersect method entails first splitting the 
data vertically into earlier and later halves, and then mark-
ing the intersection of the median X and median Y values 
for each half. A line is then drawn to connect the two median 
intersects across the two phases. Optionally, the trend line 
may be raised or lowered (keeping parallel with the origi-
nal) so it splits all data points 50% above and 50% below it.

Tukey tri-split median-based slope. The Tukey tri-split line 
was popularized by Tukey and colleagues from the Explor-
atory Data Analysis group at Princeton (Hoaglin, 
Mosteller, & Tukey, 1983; Tukey, 1977). The tri-split line 
was well known from the 1940s (Bartlett, 1949; Nair & 
Srivastava, 1942; Wald, 1940) and outside of education is 
often referred to as “Wald’s trend line” or “Wald’s slope” 
in deference to its earliest source. Tukey and colleagues, 
however, did the most to popularize the technique.

The Tukey (1977) tri-split slope begins with dividing the 
data into three equal parts on the X-axis, for example, data at 
Sessions 1 to 3, 4 to 6, and 7 to 9 on a 9-point data series: We 
will refer to this as early, middle, and late, respectively.  
The trend line is based only on the early and late thirds of 
the data, and the middle data portion has a limited role, 
adjusting the trend line up or down (keeping parallel to the 
original). The intersect of median X and Y values are marked 
for the early segment and the late data segments, and a trend 
line is drawn to connect the two intersects. Optionally, the 
line can be adjusted up or down (keeping parallel with origi-
nal) so it splits all data, 50% above and below it. Another 
option is to raise or lower the line so it passes through the 
median of the middle data segment. The Tukey method is 
currently used to train teachers in progress monitoring, as a 
substitute for the bi-split method (Hintze & Stecker, 2006).

The most extensive evaluation of median-based trend 
techniques was a Monte Carlo study by Johnstone and 
Velleman (1985). The Tukey tri-split method consistently 
outperformed the bi-split method on power and efficiency 
(Pittman coefficient). In schools research, Parker, Stein, 
and Tindal (1992) predicted student oral reading fluency 
scores with bi-split, tri-split, and linear regression lines. The 
Tukey tri-split line was closer to the regression line and sur-
passed even the linear regression line in predicting actual 
future performance.

Another promising trend line, not included in this article, 
is the “Theil–Sen slope” (Sen, 1968; Theil, 1950), also 
known as “Kendall’s robust line-fit method” (Sokal & Rohlf, 
1995). Theil–Sen is the median slope of many “mini-slopes” 
created from all pairwise data comparisons made in time 
order (early to late) in a time series. It is available in an 
increasing number of free applications: the free student 
MYSTAT software (SYSTAT, 2008), the freely download-
able WinPEPI software for health care and medical research-
ers (Abramson, 2010), and the free software KTRLine 
Version 1.0 (Granato, 2006) from the U.S. Geological 
Survey Office. Although not yet used in schools research, it 
is mentioned here because of its future promise. In the 
Johnstone and Velleman (1985) Monte Carlo study, Theil–
Sen consistently outperformed both bi-split and tri-split 
hand-fit lines in power and efficiency. Although many trend 
estimations are available, we use two best known and most 
accessible methods as exemplars for how to calculate trend 
line as the first step in GROT.
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Two Nonoverlap Indices

Just as two “commonly used” and likely known trend meth-
ods were selected as examples, we provide illustrations for 
two overlap methods which are most commonly known 
PND (Scruggs et al., 1987) and NAP (Parker & Vannest, 
2009). Just as GROT is a method that can include any type 
of method for calculating Phase A trend, GROT is appli-
cable for any type of AB nonoverlap index. Simple AB 
contrasts are chosen for the current demonstration due to 
the fact that this contrast is the most basic SCR design to 
analyze. Part of the appeal of SCR for intervention 
researchers is the flexibility in constructing the design. 
Recent guidelines for evaluating SCR design quality 
(Kratochwill et al., 2010) call for a minimum of three dem-
onstrations of experimental control. For example, this may 
take the form of an ABAB “reversal” design or three stag-
gered AB contrasts within a multiple baseline design. It 
should be noted that the AB contrast alone does not meet 
minimum criteria for SCR design; however, multiple AB 
contrasts can be aggregated to provide an omnibus effect 
size for more complicated SCR designs.

The generality of GROT is demonstrated here by apply-
ing it with PND and NAP. These two nonoverlap indices 
are demonstrated by applying them first outside of GROT, 
to raw scores from the first example data set (see Figure 1).

In Figure 1, PND is calculated as the percentage of Phase 
B data points above the highest data point in Phase A. First, 
the number of data points in Phase B is noted (n

B
 = 11). 

Next, the highest point in Phase A is located (third data 
point is 6.8), and a horizontal line drawn to their right. 

Above that line, we count 10 of the 11 Phase B data points. 
PND is calculated as 10 / 11 = 91%. In Table 1, the third 
column shows the two scores critical to PND calculation: 
(a) the highest score in Phase A (6.8) and (b) the only 
smaller value in Phase B (6.1).

NAP is a “complete” nonoverlap method, as it equally 
considers all data points in both phases. As a complete 
method, it is supported by “dominance” statistics, men-
tioned earlier and described in more detail later in this arti-
cle. NAP computation is not as simple as PND, so some 
users will prefer software, but hand calculation is easy 
enough to be accessible. NAP is output directly from a 
receiver operator characteristic (ROC) curve module as 
empirical AUC and may also be obtained from the two U 
values from a Mann–Whitney U test.

Although NAP can be instantly calculated by AUC or 
Mann–Whitney U test, hand calculation is described first to 
enhance understanding. The NAP formula is the number 
positives added to .5 the number of ties, minus the negatives, 
divided by the number of pairs: (positives + .5 × ties) / pairs.

First, the number of data points in Phases A and B are 
multiplied together to obtain the total number of paired com-
parisons (6 × 11 = 66 pairs). Next, the “overlap zone” is visu-
ally identified (see Figure 1b). The overlap zone extends 
from just under the lowest Phase B data point up to just above 
the highest Phase A data point, this zone will contain data to 
be labeled “negative” or a “tie.” For simplicity, we count the 
negatives and subtract from total number of pairs to get the 
number of positives rather than count all positives, which is 
generally faster. Ties are data equal to each other on the 
Y-axis in Phases A and B. Figure 1b overlap zone contains 

Figure 1. Example data set illustrating the calculations of (a) PND and (b) NAP.
Note. PND = percent of nonoverlapping data; NAP = nonoverlap of all pairs.
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one negative pair (Data Point 3 compared with Data Point 7; 
negative = 1) and one tie (Data Point 5 compared with Data 
Point 7; tie = .5). Note that this example has only one data 
point in Phase B for illustration, and any additional data 
points in the overlap zone would require additional compari-
sons. The same “overlap zone” is represented in Table 1, col-
umn 5, by data presented in bold and with asterisks. Out of 66 
paired comparisons, negative = 1 and tie = .5, so the remain-
ing pairs must be positive (positive = 64.5). Therefore, the 
PND [NAP = (positive + .5 × ties) / pairs] equals (64.5 + .5) / 
66 = 98%. NAP calculations are more involved than for 
PND, so some users will prefer to obtain NAP directly as 
“empirical AUC” from a ROC test, also termed a Diagnostic 
Precision test or Sensitivity/Specificity test (Swets, 1995). A 
complete description of NAP is available in Parker and 
Vannest (2009) for interested readers.

Calculation with a stats package is straightforward. 
Input “Phase” as the actual or true value, and “Scores” as 
the criterion or test variable. The empirical AUC is output 
(.98), along with its statistical significance (p < .00), and 
90% confidence intervals (CI) [.84, .99]. NAP also is 
available from a Mann–Whitney U test, with one simple 
calculation required. A full-featured Mann–Whitney mod-
ule will output larger and smaller U values, which for 
these data are large or U

L
 = 64.5, and small or U

S
 = 1.5, so 

NAP = U
L
 / (U

L
 + U

S
) = 64.5 / 66 = .98. The significance 

test yields Z = 3.12, so two-tailed p = .001. ROC-AUC and 
Mann–Whitney U tests yield identical NAP values, but 
they rely on different sampling distributions, so their 
p values and CIs will differ. For NAP, chance-level results 
are .50. NAP can be transformed so that chance-level 
results equal 0: NAP

0–100
 = 1 − (NAP

50–100
 / .5). This trans-

formation would change the NAP of .98 to .95.
The two nonoverlap results from original data (PND = 

91% and NAP = 97.7%) will be compared with PND and 
NAP values obtained from the GROT baseline trend control 
procedure. Because PND is the simplest nonoverlap to cal-
culate, and NAP is the most powerful, these two options 
will be used to demonstrate GROT.

GROT on First Example Data
GROT’s four steps are demonstrated using the same exam-
ple data set: (a) set a trend line to Phase A (this example 
will use a tri-split line); (b) keeping parallel to the original 
slope, move the trend line down to the intersect of X- and 
Y-axes, and also redraw the phase separation line perpen-
dicular to the slope; (c) rotate the graph so the trend line 
now becomes a new horizontal axis; and (d) calculate non-
overlap. These steps are shown with the tri-split slope in 
Figure 2 and in Table 1. Two nonoverlap summaries, PND 
and NAP, are both calculated for sake of comparison.

Table 1. Control of Phase A Tri-Split and Bi-Split Trends via Semipartialling in First Sample Data Set.

Time Phase Score
Tri-split slope × 

Time (.53)
Tri-split 

detrended
Bi-split slope × 

Time (.40)
Bi-split 

detrended

  1 A 2.7 0.5 2.2 0.4 2.3
  2 A 3.4 1.1 2.4 0.8 2.6
  3 A 6.8 1.6 5.2* PND 1.2 5.6* PND
  4 A 4.6 2.1 2.5* 1.6 3.0
  5 A 6.1 2.6 3.5* 2.0 4.1*
  6 A 4.2 3.2 1.1 2.4 1.8
  7 B 6.1 3.7 2.4* PND 2.8 3.3* PND
  8 B 9.5 4.2 5.3 3.2 6.3
  9 B 9.1 4.7 4.4* PND 3.6 5.5* PND
10 B 18.2 5.3 12.9 4 14.2
11 B 13.3 5.8 7.5 4.4 8.9
12 B 20.1 6.3 13.8 4.8 15.3
13 B 18.9 6.8 12.1 5.2 13.7
14 B 22.7 7.4 15.4 5.6 17.1
15 B 20.1 7.9 12.2 6 14.1
16 B 23.5 8.4 15.1 6.4 17.1
17 B 24.2 8.9 15.3 6.8 17.4
  NAP: pairs = 66, 

negative = 4, 
positive = 62, 
ties = 0; 62 / 
66 = .94

NAP: pairs = 66, 
negative = 3, 
positive = 63, 
ties = 0; 63 / 
66 = .95

Note. PND = percent of nonoverlapping data; NAP = nonoverlap of all pairs. Values in NAP’s “overlap zone” are presented in bold and with asterisks.
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Figure 2 shows the Koenig bi-split slope (.40) plotted 
through the median intersects of the two halves of Phase A 
data. Figure 2b shows dropping the bi-split trend line down 
to run through the axis intersect, and then redrawing the 
phase division line perpendicular to the reset bi-split slope. 
Figure 2b also shows the final two steps: rotating the graph 
to use the bi-split trend line as the horizontal axis, and re-
calculating PND. No redrawing of the graph is needed; it 
can be simply rotated (as was done here). PND calculated 
on the “detrended” data is 82%, which is less than the 91% 
calculated on the original data (see Figure 1), demonstrating 
that the nonoverlap effect was reduced by controlling the 
Phase A positive trend. This example shows that the origi-
nal trended data and nonoverlap calculation overestimated 
the treatment effects. This visual-graphic method works 
equally well with any nonoverlap statistic. For example, 
Figure 2c shows NAP recalculated on the GROT detrended 
data. In this example, the original effect size estimate of 
98% is reduced to 95%.

GROT validation by Allison and Gorman regression control on 
first data set. GROT accuracy (as a hand-calculated tech-
nique) can be validated by comparing its results with those 
from the best available regression control method by Alli-
son and colleagues (Faith et al., 1996). Their procedure is as 
follows: (a) Calculate Phase A slope (they use a regression 
slope, but we will use the tri-split slope = .53); (b) multiply 
the slope by a simple linear series (see Table 1, column 4); and 
(c) subtract the series of those products from the original 
data series. This will result in transformed scores, with 
Phase A trend removed (see Table 1, column 5). In column 5, 
key scores for calculating PND are labeled PND, and key 
scores for calculating NAP are asterisked. For PND, the 
highest Phase A score (5.2) is identified, and all but two 
Phase B scores (2.4, 4.4) are higher, so PND = 9 / 11 = 82%. 
For NAP, the “overlap zone” contains three Phase A scores 
(5.2, 2.50, 3.5) and two Phase B scores (2.4, 4.4), and of 
their pairings, four are in the negative direction (negative = 4), 
and ties = 0, so of the 66 total pairs, 62 must be positive 

Figure 2. Example data set demonstrating (a) Koenig’s bi-split line plotted for Phase A and extended through Phase B; (b) the bi-split 
line dropped to the X- and Y-axis intersect, the graph rotated, and PND recalculated; (c) recalculation of NAP on adjusted data.
Note. PND = percent of nonoverlapping data; NAP = nonoverlap of all pairs.
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(positive = 62). Therefore, NAP = 62 / 66 = 94%. These 
results are identical to those obtained from the GROT-
rotated graphs.

A graphic comparison also validates GROT against the 
Allison and Gorman control method. In Figure 3, the rotated 
and the Allison and Gorman detrended (semipartialled) 
scores are plotted together.

Their respective locations on the Y-axis are identical. 
Their respective locations on the X-axis are not identical, 
because rotating the graph skews the X-axis. However, a 
nonoverlap test is ordinal, so it does not depend on correct 
intervals on the X-axis—only correct order, or relative posi-
tions. Thus, this visual-graphic test also validates GROT.

GROT was also used with a tri-split median trend from 
Phase A, demonstrated in Table 1, columns 6 and 7. In col-
umn 6, the bi-split trend (.40) is multiplied by the time 
series, and the result is subtracted from original scores to 
yield detrended scores in column 7. Again, critical values 
for calculating PND are labeled, and values in NAP’s 
“overlap zone” are asterisked. PND again equals 9 / 11 = 
82%. NAP is slightly higher (than for the tri-split slope): 63 / 
66 = 95%. These results are identical to those obtained from 
visual analysis of the GROT-rotated graph in Figures 2b 
and 2c.

GROT on a second example data set. GROT is applied to 
control positive baseline trend in a second demonstration 
data set. Figures 4a and 4b show PND and NAP calculation 
on the original data. Figure 4c shows the Tukey tri-split 
slope calculated for Phase A and extended through Phase B. 
Figures 4d and 4e show the recalculation of PND and NAP 
on the GROT-rotated data. PND is reduced from 90% to 
80% due to the GROT rotation, and the more comprehen-
sive analysis NAP is reduced from 99% to 92%.

GROT validation by Allison and Gorman on the second example 
data set. Figure 4f repeats for the second example data set, 
the validation of GROT by the Allison and Gorman semipar-
tialling regression procedure. Original and detrended scores 
for the second example are presented in Table 2 to validate 
the graph rotation procedure. Considering first the tri-split 
slope (columns 4 and 5), for PND, the highest detrended 
score is the eighth in order (7.2). In Phase B (column 5), 8 of 
10 scores are higher than 7.2, so PND = 80%. For NAP, the 
scores in the “overlap zone” are all bold. Of these 6 × 2 = 12 
combinations, 7 are “negatives” or drop from Phase A to 
Phase B. There are a total of 9 × 10 = 90 pairwise combina-
tions between phases. With 7 paired comparisons negative, 
and no ties, the remainder must be positive. Therefore, NAP 
= (positive + .5 × ties) / pairs, which is 83 / 90 = 92%. The 
sixth and seventh columns in Table 2 show calculation of 
PND and NAP on GROT-rotated data using a bi-split trend 
line. There is no Figure associated with these columns; they 
are included to permit replication.

GROT Validation by Visual Analysis
GROT is designed to be a technique compatible with visual 
analysis, yet it was unknown whether the rotation would 
challenge the visual analyst, as this novel rotated graph 
may not have been previously encountered. Therefore, two 
questions were posed related to the interpretability of 
rotated graphs. The first question was whether visual ana-
lysts could make reliable judgments about behavior change 
from rotated graphs. The second question was how well 
visual analysts could identify the decreased behavior 
change from Phase A to B. The point of GROT is to display 
two phases with smaller differences in performance due to 
Phase A trend control. It was hypothesized that visual ana-
lysts would be able to detect those differences, at least in 
data sets with pronounced initial Phase A trends. Our 
hypotheses were that (a) rater agreement would be at least 
as high with GROT graphs as with original data graphs 
because of the effect of having a transformed flat baseline 
and (b) that raters would correctly detect less change from 
Phase A to B in some GROT graphs and not in others, but 
would not identify more change in GROT graphs.

Method
From a corpus of 372 published single-case distinct data 
series, AB data series were identified which met the dual 
criteria of (a) visually apparent Phase A trend in the same 
direction as desired behavior change and (b) this positive 
Phase A trend confirmed by Kendall’s Tau rank correlation 
test. A total of 49 AB data sets met these criteria. For each 
of the 49 data sets, two graphs were presented on separate 
4 × 8 note cards, first with the original data graph, second 
with a GROT-rotated graph. Three graduate students in 

Figure 3. Comparison of GROT-rotated scores with regression 
(Allison & Gorman, 1993) detrended scores.
Note. GROT = graph rotation for overlap and trend.
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school psychology and special education independently 
rated each graph for magnitude of change from Phase A 
to B on a 3-point scale: large, medium, and small. Graphs 
were presented in random order.

To answer the first question about reliable judgments, 
interrater reliabilities were calculated and compared among 
the three raters on the original data graphs and the GROT 
graphs. To answer the second question about visual judges’ 
ability to judge GROT graphs as showing smaller change, 
we calculated cross-tabulations for each rater on original 

graph ratings versus GROT graph ratings. The resulting 
matrices were then examined for shifts in amount and direc-
tion of perceived effects from original to GROT graphs. 
Note that the two graph types were presented randomly, not 
in pairs, to reduce bias.

Results
To answer the first question about reliable judgments, linear 
weighted Cohen’s kappa (κ-LW) was calculated by Richard 

Figure 4. Second example data set (a) uncorrected PND calculation; (b) uncorrected NAP calculation; (c) Phase A trend plotted as 
tri-split slope; (d) GROT rotated, and PND calculated on rotated scores; (e) GROT rotated, and NAP calculated on rotated scores; and 
(f) validation of GROT-rotated data by Allison et al. regression detrending.
Note. PND = percent of nonoverlapping data; NAP = nonoverlap of all pairs; GROT = graph rotation for overlap and trend.



Parker et al.	 87

Lowry’s (2011) open source kappa calculation webpage 
(http://faculty.vassar.edu/lowry/kappa.html). Kappa-LW, 
unlike simple kappa, is sensitive to the amount or degree of 
disagreement on an ordinal scale (Parker, Vannest, & Davis, 
in press). For the original graph judgments, kappa-LW 
among the three raters was .84, .70, and .63, and the corre-
sponding simple percent agreements were .88, .76, and .71. 
Interrater agreement on the GROT graphs by kappa-LW 
was .82, .78, and .76, with simple percent agreements .88, 
.86, and .85. Therefore, the GROT graphs permitted slightly 
higher agreement among raters, likely due to their flat 
baselines.

The second question related to visual analysts’ ability to 
detect smaller effects in the GROT graphs was answered by 
three cross-tabulations. Each rater (see Table 3) shows 

response shifts. Rater A judged 38 graphs as unchanged and 
21 GROT graphs as showing reduced effects. Rater B 
judged 41 graphs as unchanged and 18 GROT graphs with 
smaller effects. Rater C judged 44 graphs as unchanged and 
15 GROT graphs with smaller effects. There were no 
response shifts from original to GROT graphs indicating 
greater perceived effects.

Discussion
Nine overlap techniques are currently available to calculate 
standardized scores for determining the “size” of change 
between two or more phases (Parker et al., 2011). However, 
only two are capable of handling trend Tau-U and ECL. 
This is unfortunate and important because trend in baseline 

Table 3. Response Shifts From Three Judges Rating AB Graphs Before and After GROT Transformations.

Raw data graphs

  Rater A Rater B Rater C

GROT graphs Small Medium Large Small Medium Large Small Medium Large

Small 22 13 3 22 10 2 21 8 2
Medium — 9 5 — 11 6 — 14 5
Large — — 7 — — 8 — — 9

Note. GROT = graph rotation for overlap and trend.

Table 2. Control of Phase A Koenig Bi-Split Trend via Semipartialling in Second Sample Data Set.

Time Phase Score
Tri-split slope × 

Time (.53) Tri-split detrended
Bi-split slope 
× Time (.40) Bi-split detrended

  1 A 4.6 0.4 4.2 0.4 4.2
  2 A 7.3 0.9 6.4* 0.8 6.5*
  3 A 8.1 1.3 6.8* 1.3 6.8*
  4 A 7.7 1.8 5.9* 1.7 6.0*
  5 A 7.5 2.3 5.3 2.1 5.4
  6 A 8.1 2.7 5.4 2.5 5.6
  7 A 9.6 3.2 6.5* 2.9 6.7*
  8 A 10.8 3.6 7.2* PND 3.4 7.4* PND
  9 A 9.6 4.1 5.6* 3.8 5.8*
10 B 10 4.5 5.5* PND 4.2 5.8* PND
11 B 12.3 4.9 7.4 4.6 7.7
12 B 14.2 5.4 8.8 5.0 9.2
13 B 12.7 5.9 6.9* PND 5.5 7.2* PND
14 B 15.4 6.3 9.1 5.9 9.5
15 B 15.8 6.8 9.0 6.3 9.5
16 B 22.3 7.2 15.1 6.7 15.6
17 B 21.2 7.7 13.5 7.1 14.1
18 B 21.2 8.1 13.1 7.6 13.6
19 B 23.5 8.6 15.0 8.0 15.5
  NAP: pairs = 90, negative = 7, 

ties = 0; 83 / 90 = .92
NAP: pairs = 90, negative 
= 7, ties = 0; 83 / 90 = .92

Note. PND = percent of nonoverlapping data; NAP = nonoverlap of all pairs. Values in NAP’s “overlap zone” are presented in bold and with asterisks. 
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data weakens conclusion validity (Kane, 2001; Kazdin, 
2003; Orme, 1991) and thus our ability to promulgate prac-
tices with empirical evidence. Although many statistical 
models address this issue, they are largely inappropriate or 
inaccessible for nonparametric data or visual analysts. 
ECL, which was known as a technique in other fields in the 
1940s, has a long history of use but limitations. Three in 
particular, the interpretation as a ratio of data points, low 
power, and inability to be applied universally are chal-
lenges that if overcome, would move the field forward and 
extend our knowledge base of valid, reliable techniques to 
address trend in nonoverlap analysis, which are compati-
ble with visual analysis and avoid sophisticated statistical 
packages.

This article presented the GROT method for controlling 
positive baseline trend within a nonoverlapping data analy-
sis and demonstrated validity by performance equal to the 
best, current regression method by Allison and colleagues 
(Allison & Gorman, 1993; Faith et al., 1996). This equiva-
lence was demonstrated both numerically and graphically. 
GROT also demonstrated reliability with visual analyst rat-
ings despite producing a novel rotated graph, which may 
have presented challenges. Finally, rater response shifts 
from original to GROT graphs indicate compatibility with 
visual judgments and produced reliable detection of the 
amount of change in simple AB graphs, more so than for 
original graphs.

GROT advances our knowledge base by providing an 
additional technique for visual analysts, a technique 
which appears to improve accuracy in determining effects. 
Over the past few decades, there has been ongoing 
research on the training and supports that would enhance 
reliability of visual judgments from graphs (Ferron & 
Jones, 2006; Fisher, Kelley, & Lomas, 2003; Ximenes, 
Manolov, Solanas, & Quera, 2009). The GROT graph 
may be of service toward that goal. GROT may have use 
as a visual analyst tool alone, aside from nonoverlap 
calculations.

Ratings of original and GROT graphs consistently placed 
GROT effects equal or lower than for the original graphs. 
No GROT graphs were identified as showing larger effects, 
and this strong finding held over three independent raters 
and 59 graphs. However, about 70% of graphs were judged 
as showing no change in magnitude of effect. There are sev-
eral possible explanations. In some instances, we suspect 
that visual judges cannot detect small changes. Our 3-point 
scale of “smaller, same, larger” was less sensitive than nec-
essary to detect changes. Or, in some instances, adjusting 
positive baseline trend may not have eliminated effects of a 
very large magnitude. However, the minimum amount of 
change detectable from original to GROT graphs is a ques-
tion with practical implications for visual analysts as is an 
empirical comparison between effect size changes and 
visual analysis estimations.

Another way GROT advances in the field is its conve-
nience. GROT is a method which can be carried out entirely 
with pencil and ruler on a paper graph, so it is fully acces-
sible to visual analysis. It advances the field because non-
overlap is widely used by SCR practitioners but is commonly 
criticized for failing to consider positive “preexisting” 
Phase A trend. The addition of Phase A trend control per-
mits nonoverlap methods to compete with leading paramet-
ric methods.

An asset of GROT is that it is a general graphic approach 
which works equally well for any trend line, including lin-
ear regression, Tukey tri-split, Koenig bi-split, or Theil–Sen 
slope. The Tukey tri-split and Koenig bi-split alternatives 
were demonstrated. GROT is applicable with any nonover-
lap method. Here, only PND and NAP were applied, but 
other nonoverlap indices could be used as well.

Cautions on Controlling 
Baseline Trend
Although this article has the primary goal of promoting a 
new analytic method, it also needs to raise concerns about 
the overuse of baseline trend control, that is, its use with 
unreliable, highly variable trend lines. All trend control 
methods noted in this article, including ECL, Allison and 
Gorman’s (1993) regression method, and GROT, adjust the 
full data series according to the slope of the Phase A trend 
line. However, there are at least three concerns with the use 
or misuse of such control. These concerns are not new 
(Scruggs & Mastropieri, 1994, 1998), but to date have not 
been addressed, so practitioners should be aware.

When Phase A trend is stable (i.e., lacks variability), a 
linear trend line is a reliable summary of the data points 
contained within the phase. Controlling the Phase A trend 
in cases with stable (i.e., nonvariable) data is likely to ren-
der a more appropriate estimate of effect across phases. In 
contrast, the application of baseline trend control with 
highly variable Phase A data raises some concerns. As the 
control is based on slope or trend line, it is blind to the 
potential unreliability of the Phase A trend line, so control 
from highly unreliable trend will have the same impact on 
Phase B scores as from a reliable trend. This is counterintui-
tive; some linear trend lines reflect data so poorly that they 
should not be fit to the data, let alone permitted to modify 
Phase B scores. Phase A data may simply lack linearity, and 
a straight line would be inappropriate.

The second concern is that control of Phase A trend 
becomes more extreme with a longer Phase B. Phase A 
trend line slope is most reliable within Phase A, and even 
more so at the center of Phase A. If extended through a long 
Phase B, the reliability or credibility of this slope quickly 
approaches zero. Given a long enough Phase B, the baseline 
trend control will transform Phase B data far outside the 
bounds of the score scale. Regression texts warn us about 



Parker et al.	 89

the very low reliability of projections into the future, and 
the problem is even greater for N = 1 single-participant data.

The third concern is the open question of whether Phase 
A trend would continue unabated through Phase B had there 
been no intervention. This is a difficult question to answer 
statistically, but we do know that a strong trend in the first 
5 or 8 data points of a baseline is not a good predictor of 
trend in the next 5 or 8 data points (Parker, Cryer, & Byrns, 
2006). The evidence indicates that strong trend in the first 
third or half of a baseline tends to moderate considerably in 
the final two thirds or half of that same baseline. This evi-
dence is not conclusive, but is suggestive that positive base-
line trend may not continue at strength into Phase B.

We believe that these three concerns have sufficient 
weight that control of baseline trend should be exercised 
cautiously, which is to say not with quite short baselines or 
with highly variable baseline data. Baseline control has 
logical appeal and is carried out with precision. However, 
data transformations from short and highly variable Phase 
A data may be an exercise in false precision.

In summary, this article has presented and a visual-
graphic method of controlling for baseline trend within data 
nonoverlap and included preliminary reliability and validity 
comparisons. The method offers greater flexibility and 
power than White and Haring’s (1980) respected ECL 
method and is more accessible and more directly interpre-
table than the Allison and Gorman’s (1993) regression 
method. GROT leads to reliable judgments of behavior 
change and correctly reflects reduced effects from original 
data. Initial indications of performance are positive, how-
ever, as with any new analytic method, it requires testing 
over time and by a variety of researchers. If present results 
are borne out by others, then we hope to have contributed to 
the merging of statistical and visual analysis of SCR data.
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